If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+4t=9t+18
We move all terms to the left:
2t^2+4t-(9t+18)=0
We get rid of parentheses
2t^2+4t-9t-18=0
We add all the numbers together, and all the variables
2t^2-5t-18=0
a = 2; b = -5; c = -18;
Δ = b2-4ac
Δ = -52-4·2·(-18)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*2}=\frac{-8}{4} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*2}=\frac{18}{4} =4+1/2 $
| 2t^2+4t=9t+18 | | 25a^2-81=0 | | 2m/5+3m/4=10 | | 2m/5+3m/4=10 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 3n+4=7-2(n-2) | | 1=4u/7u | | 1=4u/7u | | 7u=4u | | 2(x-3)=18-5(x+4) | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 2x=9=8x=14 | | K-4=-9+k | | x÷13=-12 | | x÷13=-12 | | 3x+(32)=59 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (a+1)^2=25 | | (a+1)^2=25 | | (a+1)^2=25 | | 7x+22=5x |